Catalyst recognition of cis-1,2-diols enables site-selective functionalization of complex molecules
نویسندگان
چکیده
Carbohydrates and natural products serve essential roles in nature, and also provide core scaffolds for pharmaceutical agents and vaccines. However, the inherent complexity of these molecules imposes significant synthetic hurdles for their selective functionalization and derivatization. Nature has, in part, addressed these issues by employing enzymes that are able to orient and activate substrates within a chiral pocket, which increases dramatically both the rate and selectivity of organic transformations. In this article we show that similar proximity effects can be utilized in the context of synthetic catalysts to achieve general and predictable site-selective functionalization of complex molecules. Unlike enzymes, our catalysts apply a single reversible covalent bond to recognize and bind to specific functional group displays within substrates. By combining this unique binding selectivity and asymmetric catalysis, we are able to modify the less reactive axial positions within monosaccharides and natural products.
منابع مشابه
Tandem Z-Selective Cross-Metathesis/Dihydroxylation: Synthesis of anti-1,2-Diols.
A stereoselective synthesis of anti-1,2-diols has been developed using a multitasking Ru catalyst in an assisted tandem catalysis protocol. A cyclometalated Ru complex catalyzes first a Z-selective cross-metathesis of two terminal olefins, followed by a stereospecific dihydroxylation. Both steps are catalyzed by Ru, as the Ru complex is converted to a dihydroxylation catalyst upon addition of N...
متن کاملTandem Z - selective cross metathesis – dihydroxylation for the synthesis of anti - 1 , 2 - diols
A stereoselective synthesis of anti-1,2-diols has been developed using a multitasking Ru-catalyst in an assisted tandem catalysis protocol. A cyclometalated ruthenium complex catalyzes first a Zselective cross metathesis of two terminal olefins followed by a stereospecific dihydroxylation. Both steps are catalyzed by Ru, as the Ru-complex is converted to a dihydroxylation catalyst upon addition...
متن کاملMagnetic nanoparticles containing Manganese salophen complex as an selective and recyclable catalyst for epoxidation of alkenes
A magnetically recoverable catalyst consisting of Mn (III) salophen complex was prepared. The synthesized catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Fourier transform infrared (FT-IR). The immobilized catalyst was shown to be an ef...
متن کاملSelective transition-metal-free vicinal cis-dihydroxylation of saturated hydrocarbons.
A transition-metal-free cis-dihydroxylation of saturated hydrocarbons under ambient reaction conditions has been developed. The described approach allows a direct and selective synthesis of vicinal diols. The new reaction thereby proceeds via radical iodination and a sequence of oxidation steps. A broad scope of one-pot dual C(sp3)-H bond functionalization for the selective synthesis of vicinal...
متن کاملManganese salophen complex supported on magnetic nanoparticles as an efficient, selective and recyclable catalyst for epoxidation of alkenes
A magnetically recoverable catalyst consisting of Mn (III) salophen complex was prepared. The synthesized catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Fourier transform infrared (FT-IR). The immobilized catalyst was shown to be an ef...
متن کامل